
ACPC 2018
Solutions Presentation

October 27, 2018

ACPC 2018 October 27, 2018 1 / 21

Announcement

Please complete the survey:
https://goo.gl/forms/POfpZAPRWQcsxrWp2

ACPC 2018 October 27, 2018 2 / 21

Early Winter
Author: Tony Cai

Just do it.

What else is there to say?

Do not print anything besides the answer.
e.g. print(“Please input n and dm”).

Statistics; 59 solves / 126 attempted

ACPC 2018 October 27, 2018 3 / 21

Early Winter
Author: Tony Cai

Just do it.

What else is there to say?

Do not print anything besides the answer.
e.g. print(“Please input n and dm”).

Statistics; 59 solves / 126 attempted

ACPC 2018 October 27, 2018 3 / 21

Early Winter
Author: Tony Cai

Just do it.

What else is there to say?

Do not print anything besides the answer.
e.g. print(“Please input n and dm”).

Statistics; 59 solves / 126 attempted

ACPC 2018 October 27, 2018 3 / 21

Early Winter
Author: Tony Cai

Just do it.

What else is there to say?

Do not print anything besides the answer.
e.g. print(“Please input n and dm”).

Statistics; 59 solves / 126 attempted

ACPC 2018 October 27, 2018 3 / 21

Eating Out
Author: Tony Cai

Problem

Given m objects, assign a, b, and c objects to person 1, 2, and 3
respectively such that no object is assigned to all 3 people

Statistics

51 solves / 254 attempted

Solution

Possible iff a + b + c ≤ 2 ·m

ACPC 2018 October 27, 2018 4 / 21

PUBNite
Author: Tony Cai

Problem

Calculate the minimum amount of time a moving point is outside a circle

Statistics

20 solves / 192 attempted

Solution

Case analysis:

Safety zone may stop shrinking before Anthony is in danger

Anthony may be in danger and catch up to safety zone

...

ACPC 2018 October 27, 2018 5 / 21

Exploding Kittens
Author: Tony Cai

Problem

Simulate a card game where on a player’s turn, she either gets knocked
out or gets another life.

Statistics

12 solves / 139 attempted

ACPC 2018 October 27, 2018 6 / 21

Exploding Kittens

Problem

Simulate a card game where on a player’s turn, she either gets knocked
out or gets another life.

Solution

Suppose k players are active, the current player is p, the current turn
number is t1, and the next turn number is t2. The next player to draw a
card is (p + t2 − t1)modk .

ACPC 2018 October 27, 2018 7 / 21

Exploding Kittens

Problem

Simulate a card game where on a player’s turn, she either gets knocked
out or gets another life.

Solution

Keep track of active players in an array, and update the array when a
player is knocked out.

Time Complexity: O(n2 + |E |+ |D|)

ACPC 2018 October 27, 2018 8 / 21

Homework
Author: Modan Han

Problem

Given strings s, s1, s2, check if s can be partitioned into sub-sequences s1
and s2.

Statistics

17 solves / 197 attempted

ACPC 2018 October 27, 2018 9 / 21

Homework

Solution

Dynamic programming. Similar to the classical problem longest
common sub-sequence (LCS).

Let f (i , j) return whether it is possible to partition s[i + j :] into a[i :]
and b[j :].

Base case f (|s1|, |s2|) = True. Want to compute f (0, 0).

Recurrence relation is as follows:

f (i , j) = (f (i + 1, j) ∧ s[i + j] = s1[i])

= ∨(f (i , j + 1) ∧ s[i + j] = s2[j]).

ACPC 2018 October 27, 2018 10 / 21

Homework

Solution

Dynamic programming. Similar to the classical problem longest
common sub-sequence (LCS).

Let f (i , j) return whether it is possible to partition s[i + j :] into a[i :]
and b[j :].

Base case f (|s1|, |s2|) = True. Want to compute f (0, 0).

Recurrence relation is as follows:

f (i , j) = (f (i + 1, j) ∧ s[i + j] = s1[i])

= ∨(f (i , j + 1) ∧ s[i + j] = s2[j]).

ACPC 2018 October 27, 2018 10 / 21

Homework

Solution

Dynamic programming. Similar to the classical problem longest
common sub-sequence (LCS).

Let f (i , j) return whether it is possible to partition s[i + j :] into a[i :]
and b[j :].

Base case f (|s1|, |s2|) = True. Want to compute f (0, 0).

Recurrence relation is as follows:

f (i , j) = (f (i + 1, j) ∧ s[i + j] = s1[i])

= ∨(f (i , j + 1) ∧ s[i + j] = s2[j]).

ACPC 2018 October 27, 2018 10 / 21

Homework

Solution

Dynamic programming. Similar to the classical problem longest
common sub-sequence (LCS).

Let f (i , j) return whether it is possible to partition s[i + j :] into a[i :]
and b[j :].

Base case f (|s1|, |s2|) = True. Want to compute f (0, 0).

Recurrence relation is as follows:

f (i , j) = (f (i + 1, j) ∧ s[i + j] = s1[i])

= ∨(f (i , j + 1) ∧ s[i + j] = s2[j]).

ACPC 2018 October 27, 2018 10 / 21

Arachnophobia
Author: Tony Cai

Problem

Find a path between s and t in a graph that maximizes the minimum
distance between a set of vertices and any vertex on the path. The length
of the path is also constrained.

ACPC 2018 October 27, 2018 11 / 21

Arachnophobia

Solution

Complex graph problem involving multiple algorithms in multiple
steps. As a high level overview, the intended solution mainly uses
Dijkstra’s SSSP and binary search.

First of all, for every node, compute its min distance to any spider.
Sounds difficult, but is not any harder than Dijkstra’s. Imagine there’s
only one spider/source, this step is easy for anyone who can
implement Dijkstra’s. When there are multiple spiders/sources,
simply push them all into heap in the beginning and mark their
distances to be 0. The rest is identical to normal Dijkstra’s.

ACPC 2018 October 27, 2018 12 / 21

Arachnophobia

Solution

Complex graph problem involving multiple algorithms in multiple
steps. As a high level overview, the intended solution mainly uses
Dijkstra’s SSSP and binary search.

First of all, for every node, compute its min distance to any spider.
Sounds difficult, but is not any harder than Dijkstra’s. Imagine there’s
only one spider/source, this step is easy for anyone who can
implement Dijkstra’s. When there are multiple spiders/sources,
simply push them all into heap in the beginning and mark their
distances to be 0. The rest is identical to normal Dijkstra’s.

ACPC 2018 October 27, 2018 12 / 21

Arachnophobia

Solution

Complex graph problem involving multiple algorithms in multiple
steps. As a high level overview, the intended solution mainly uses
Dijkstra’s SSSP and binary search.

First of all, for every node, compute its min distance to any spider.
Sounds difficult, but is not any harder than Dijkstra’s. Imagine there’s
only one spider/source, this step is easy for anyone who can
implement Dijkstra’s. When there are multiple spiders/sources,
simply push them all into heap in the beginning and mark their
distances to be 0. The rest is identical to normal Dijkstra’s.

ACPC 2018 October 27, 2018 12 / 21

Arachnophobia

Solution

For a vertex v , We’ll call the min distance from v to any spider s(v).

Once s(v) is known for every v , there are 2 likely scenarios.

1. Anthony is trying to avoid spiders too much, i.e. avoiding all and
only vertices v such that s(v) < K for some constant K , however,
this results in Anthony avoiding too many spiders and not making it
in time.

2. Anthony is staying too close to spiders, i.e. Anthony’s avoiding all
and only vertices v such that s(v) < K for some constant K ,
however, Anthony could be avoiding more vertices than he is in order
to increase his min distance to any spider, yet still making it in time.

ACPC 2018 October 27, 2018 13 / 21

Arachnophobia

Solution

For a vertex v , We’ll call the min distance from v to any spider s(v).

Once s(v) is known for every v , there are 2 likely scenarios.

1. Anthony is trying to avoid spiders too much, i.e. avoiding all and
only vertices v such that s(v) < K for some constant K , however,
this results in Anthony avoiding too many spiders and not making it
in time.

2. Anthony is staying too close to spiders, i.e. Anthony’s avoiding all
and only vertices v such that s(v) < K for some constant K ,
however, Anthony could be avoiding more vertices than he is in order
to increase his min distance to any spider, yet still making it in time.

ACPC 2018 October 27, 2018 13 / 21

Arachnophobia

Solution

For a vertex v , We’ll call the min distance from v to any spider s(v).

Once s(v) is known for every v , there are 2 likely scenarios.

1. Anthony is trying to avoid spiders too much, i.e. avoiding all and
only vertices v such that s(v) < K for some constant K , however,
this results in Anthony avoiding too many spiders and not making it
in time.

2. Anthony is staying too close to spiders, i.e. Anthony’s avoiding all
and only vertices v such that s(v) < K for some constant K ,
however, Anthony could be avoiding more vertices than he is in order
to increase his min distance to any spider, yet still making it in time.

ACPC 2018 October 27, 2018 13 / 21

Arachnophobia

Solution

For a vertex v , We’ll call the min distance from v to any spider s(v).

Once s(v) is known for every v , there are 2 likely scenarios.

1. Anthony is trying to avoid spiders too much, i.e. avoiding all and
only vertices v such that s(v) < K for some constant K , however,
this results in Anthony avoiding too many spiders and not making it
in time.

2. Anthony is staying too close to spiders, i.e. Anthony’s avoiding all
and only vertices v such that s(v) < K for some constant K ,
however, Anthony could be avoiding more vertices than he is in order
to increase his min distance to any spider, yet still making it in time.

ACPC 2018 October 27, 2018 13 / 21

Arachnophobia

Solution

For a vertex v , We’ll call the min distance from v to any spider s(v).

Once s(v) is known for every v , there are 2 likely scenarios.

1. Anthony is trying to avoid spiders too much, i.e. avoiding all and
only vertices v such that s(v) < K for some constant K , however,
this results in Anthony avoiding too many spiders and not making it
in time.

2. Anthony is staying too close to spiders, i.e. Anthony’s avoiding all
and only vertices v such that s(v) < K for some constant K ,
however, Anthony could be avoiding more vertices than he is in order
to increase his min distance to any spider, yet still making it in time.

ACPC 2018 October 27, 2018 13 / 21

Arachnophobia

Solution

3. There is a third scenario. Anthony’s avoiding all and only vertices
v such that s(v) < K for some constant K , such that

a. if Anthony avoids v such that s(v) < K + 1, this results in scenario
1. where Anthony avoids too many spiders. i.e. K is too large.

b. if Anthony avoids v such that s(v) < K − 1, this results in
scenario 2. where Anthony avoids too few spiders. i.e. K is too little.

Binary search for K .

For each K , use normal Dijkstra’s from s to t on the sub-graph,
where vertices v such that s(v) < K are ignored. The failure
condition is if Anthony does not make it in time.

ACPC 2018 October 27, 2018 14 / 21

Arachnophobia

Solution

3. There is a third scenario. Anthony’s avoiding all and only vertices
v such that s(v) < K for some constant K , such that

a. if Anthony avoids v such that s(v) < K + 1, this results in scenario
1. where Anthony avoids too many spiders. i.e. K is too large.

b. if Anthony avoids v such that s(v) < K − 1, this results in
scenario 2. where Anthony avoids too few spiders. i.e. K is too little.

Binary search for K .

For each K , use normal Dijkstra’s from s to t on the sub-graph,
where vertices v such that s(v) < K are ignored. The failure
condition is if Anthony does not make it in time.

ACPC 2018 October 27, 2018 14 / 21

Arachnophobia

Solution

3. There is a third scenario. Anthony’s avoiding all and only vertices
v such that s(v) < K for some constant K , such that

a. if Anthony avoids v such that s(v) < K + 1, this results in scenario
1. where Anthony avoids too many spiders. i.e. K is too large.

b. if Anthony avoids v such that s(v) < K − 1, this results in
scenario 2. where Anthony avoids too few spiders. i.e. K is too little.

Binary search for K .

For each K , use normal Dijkstra’s from s to t on the sub-graph,
where vertices v such that s(v) < K are ignored. The failure
condition is if Anthony does not make it in time.

ACPC 2018 October 27, 2018 14 / 21

Arachnophobia

Solution

3. There is a third scenario. Anthony’s avoiding all and only vertices
v such that s(v) < K for some constant K , such that

a. if Anthony avoids v such that s(v) < K + 1, this results in scenario
1. where Anthony avoids too many spiders. i.e. K is too large.

b. if Anthony avoids v such that s(v) < K − 1, this results in
scenario 2. where Anthony avoids too few spiders. i.e. K is too little.

Binary search for K .

For each K , use normal Dijkstra’s from s to t on the sub-graph,
where vertices v such that s(v) < K are ignored. The failure
condition is if Anthony does not make it in time.

ACPC 2018 October 27, 2018 14 / 21

Arachnophobia

Solution

3. There is a third scenario. Anthony’s avoiding all and only vertices
v such that s(v) < K for some constant K , such that

a. if Anthony avoids v such that s(v) < K + 1, this results in scenario
1. where Anthony avoids too many spiders. i.e. K is too large.

b. if Anthony avoids v such that s(v) < K − 1, this results in
scenario 2. where Anthony avoids too few spiders. i.e. K is too little.

Binary search for K .

For each K , use normal Dijkstra’s from s to t on the sub-graph,
where vertices v such that s(v) < K are ignored. The failure
condition is if Anthony does not make it in time.

ACPC 2018 October 27, 2018 14 / 21

Trimming Polygon
Author: Zachary Friggstad

Problem

Given a convex polygon P, create a smaller polygon Q using a subset of
points vertices from P and maximize area(Q) + sum of values of vertices
not in Q.

Statistics

0 solves / 14 attempted

ACPC 2018 October 27, 2018 15 / 21

Trimming Polygon

Problem

Given a convex polygon P, maximize M

Solution

Let f (i , j) denote the maximum possible score using only the vertices
between v [i] and v [j] (inclusive)

ACPC 2018 October 27, 2018 16 / 21

Trimming Polygon

Problem

Given a convex polygon P, maximize M

Solution

Suppose v [k] ∈ Q. Then maximum possible score is
f (i , k) + f (k , j) + area(vi , vk , vj).

ACPC 2018 October 27, 2018 17 / 21

Trimming Polygon

Problem

Given a convex polygon P, maximize M

Solution

Memoize recursion result

Compute triangle area with cross product

Time complexity: O(n3)

ACPC 2018 October 27, 2018 18 / 21

Dog Trouble
Author: Kent Williams-King

Problem

Assign n dogs to m bowls while minimizing total waiting time.

Statistics

0 solves / 6 attempted

Solution

Suppose all dogs finish eating at time t. Calculate the waiting time
from assigning dog i to bowl j . The minimum total waiting time can
then be calculated using min-cost bipartite matching.

Iterate through all possible end time.

ACPC 2018 October 27, 2018 19 / 21

Acknowledgement

Jury:

Tony Cai

Modan Han (Google)

Zachary Friggstad (University of Alberta)

Kent Williams-King (Brown University)

Wen Li Looi (Google)

Darko Aleksic (Assistant Coach, Microsoft)

ACPC 2018 October 27, 2018 20 / 21

Closing Remarks

Awesome job!

CPC has meetings every Wednesday (6pm to 8pm) and Saturday
(10am to 3pm)

Next major contest: Calgary Collegiate Programming Contest (March
2019)

ACPC 2018 October 27, 2018 21 / 21

	First Main Section
	First Subsection
	Second Subsection

